Top.Mail.Ru
PGConf.Russia 2018 | PGConf.Russia

title

text

PGConf.Russia 2018

PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 500 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. В программе – мастер-классы ведущих мировых экспертов, доклады в три тематических потока, примеры лучшего опыта и разбор ошибок, гостиная разработчиков и блиц-доклады из зала.

Темы встречи

  • PostgreSQL на переднем крае: большие данные, интернет вещей, блокчейн
  • новое в PostgreSQL и вокруг: развитие PostgreSQL и его экосистемы
  • PostgreSQL в реальных системах: архитектура, миграция, эксплуатация
  • Использование PostgreSQL в платформе 1С
  • PostgreSQL в геоинформационных системах (GIS)
  • более
    0 участников
  • 0 докладчиков
  • 0
    минут общения
  • 54 доклада
  • оффлайн
    формат

Доклады

Архив докладов

PGConf.Russia 2018
  • Константин Книжник
    Константин Книжник Postgres Professional Ведущий разработчик

    СУБД Постгрес успешно используется во многих OLTP приложениях, выполняющих большое число простых запросов. Но для аналитики, требующей обработки большого количества данных, Постгрес на порядки отстаёт от специализированных СУБД, оптимизированных для массовой обработки данных. Скорость работы Постгреса для OLAP запросов сдерживается следующими факторами:

    • Большие накладные расходы на распаковку записей.
    • Затраты на интерпретацию запроса (Постгрес интерпретирует план выполнения запроса)
    • Поддержка работы с абстрактными типами
    • Недостатки PULL модели выполнения запроса
    • Издержки MVCC

    Все эти проблемы могут быть в большой степени решены за счёт использования векторного исполнителя запросов, который за одну операцию в состоянии обработать целый блок (вектор) значений. В этом докладе описывается способ добавления векторных операций в Посгрес, с помощью стандартного механизма расширения Посгреса, без внесения изменений в ядро. Такие механизмы Посгреса как UDT (определяемые пользователем типы), FDW (абстракция внешнего поставщика данных), расширения исполнителя запросов позволяют реализовать в Постгресе вертикальный таблицы, с которыми можно работать как с обычными таблицами. Но на порядки быстрее благодаря использованию векторных операций.

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

  • Константин Евтеев
    Константин Евтеев X5 FoodTech Главный архитектор
    Михаил Тюрин
    Михаил Тюрин ИТ предприниматель предприниматель

    В Avito объявления хранятся в базах данных PostgreSQL. При этом уже на протяжении многих лет активно применяется логическая репликация. С помощью неё успешно решаются вопросы роста объема данных и количества запросов к ним, масштабирования и распределения нагрузки, доставки данных в DWH и поисковые подсистемы, межбазные и межсервисные синхронизации данных и пр.

    Но ничего не бывает "бесплатно" - на выходе мы имеем сложную распределенную систему. Отказы оборудования - это норма, к ним нужно быть готовым. Можно найти много примеров конфигурации логической репликации и success stories ее использования, при этом практических примеров по восстановлению после аварий почти нет, не говоря уже про готовые инструменты. За годы эксплуатации репликации PgQ мы наработали обширный опыт, многое переосмыслили, реализовали собственные надстройки и расширения для восстановления и согласования данных после аварий в распределенных системах обработки данных.

    В докладе мы покажем, как наш опыт можно переложить на новую подсистему логической репликации в 10-ке. В текущей реализации это нетривиальные решения – остается ряд вопросов для комьюнити, сводящихся к реализации простых механизмов восстановления - таких же простых как и настройка репликации в 10-ке.

  • Алексей Клюкин
    Алексей Клюкин Zalando SE Database Engineer
    Александр Кукушкин
    Александр Кукушкин Zalando SE Database Engineer

    Patroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.

    Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:

    • область применения: какие задачи HA успешно решаются Patroni
    • обзор архитектуры
    • создание тестового кластера
    • утилита patronictl
    • изменение конфигурации PostgreSQL для кластера, управляемого Patroni
    • мониторинг с помощью API
    • подходы к переключению клиентов
    • дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
    • настройка синхронной репликации
    • расширяемость и универсальность
    • частые ошибки и их диагностика

    Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.

    Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com

    После установки Vagrant и Virtualbox нужно выполнить:

    $ git clone https://github.com/alexeyklyukin/patroni-training
    $ cd patroni-training
    $ vagrant up
    

    После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.

Все доклады

Партнёры

PGConf.Russia 2018

Серебряный партнёр

Организационный партнёр

Информационные партнёры

Партнёр