
postgrespro
.ru

Trying to
gain peace
of mind by
using
constraints

 Ivan Frolkov

2

Database tasks

● Reliable data storage

● Convenient access

● Business process synchronization

3

Business process
synchronization
● Prevent a single operation on an object from being done multiple times.

− The refund has been sent to the client twice.

● Prevent loss of objects.

− Unsent orders accumulate in the warehouse.

● Prevent new objects from appearing

− The product specified in the database can’t be found in the
warehouse.

● Other things

− The uniqueness of people, debit = credit, 1.5 excavators, etc.

4

How can they avoid this?

● They need to determine in what state the database cannot be.

● To prohibit these states, we need

Integrity Constraints

5

Integrity Constraints

● Prohibit explicitly incorrect states.

● "Affect performance negatively”:

− Well, let it go down.

− They need to check everything.

● They need to check it twice.

● It is better if the checks are written by different people.

● "Inconvenient and inflexible”.

● I only saw foreign key and not null :-(

6

What it could be?
● not null - often

● check - rarely

● unique/primary key – almost always

− unique constraint can be deferrable, index cannot be deferrable

− Tables without a primary key are also common.

● foreign key

− on delete cascade/set null/default

● exclude

● json schema – not implemented!

● Triggers

7

Granularity of constraints

● String – null, check

− null/check cannot be deferrable, which is contrary to the
standard. However, no one complained.

● Query – primary key, unique, exclude, trigger.

● Transaction - primary key, unique, exclude, trigger

− deferrable

● deferrable trigger = constraint trigger

8

Assertions
● CREATE ASSERTION is a part of the standard.

● Unfortunately, not implemented yet...

− It's not clear when it will be implemented.

− ...and whether it will be at all.

− ...it is not implemented anywhere at all.

● It would be nice:

− create assertion limit_debts as
check((select sum(amount) from debt1)+(select
sum(amount) from debt2)<1000000)

− Etc.

9

Triggers

● There should be no unexpected actions in triggers.

● Checks and aggregation only

● Keep in mind parallelism and synchronize

− Via the auxiliary table (e.g. amounts by group)

− Via advisory locks

10

Auxiliary tables

● sales(id, date, amount)

● month_sales(int year>2019 && <=now(), int month between 1 and 12,
sales_count>0, total_amount>0, min_amount>0, max_amount>0…)

− Since the string is blocked during insert / update, no errors will
occur during parallel execution.

− Productivity drops: we either get the wrong result quickly, or slowly
get the right one.

● May be useful on its own

● Another trigger is to prevent manual changes (pg_trigger_level())

11

Only five orders per client

● client(id int, …)
order(id, client_id,..)

● create or replace function trg_only_5() returns trigger as
$code$
begin
 if tg_op=’DELETE’ or tg_op=’UPDATE’ and old.client_id=new.client_id then
 return;
 end if;
 perform from client c where c.id=new.client_id for update;
 if (select count(*) from order o where o.client_id=new.client_id)>5 then
 raise sqlstate ‘23U01’ using message=’Too many orders’;
 end if;
 return new;
end
$code$
language plpgsql;

create or replace trigger only5 before insert or update on order for each
row execute procedure trg_only_5();

12

Only five orders per client

● client(id int, …)
order(id, client_id,..)

● create or replace function trg_only_5() returns trigger as
$code$
begin
 if tg_op=’DELETE’ or tg_op=’UPDATE’ and old.client_id=new.client_id then
 return;
 end if;
 perform pg_xact_advisory_lock(hashint8(new.client_id));
 if (select count(*) from order o where o.client_id=new.client_id)>5 then
 raise sqlstate ‘23U01’ using message=’Too many orders’;
 end if;
 return new;
end
$code$
language plpgsql;

create or replace trigger only5 before insert or update on order for each
row execute procedure trg_only_5();

13

Advisory locks

● Don't want to create temporary tables

● However, they still need to block

● pg_advisory_xact_lock(bigint)

● hashint8, hashtextextended… - undocumented functions
for hashing values.

14

Triggers and referential
integrity
● Referential integrity only works with sets of columns of the

table.

● some_func(column) – alas, doesn't work

● Trigger only

● When executing, keep in mind for key share - it will prevent
the deletion of a string in the parent table

● chart(prefix text not null, …)

● account(nm, ….)

● create or replace function trg_check_nm_prefix() returns trigger as
$code$
<<code>>
declare
 prefix constant text=substring(new.nm from 1 for 5);
begin
 if tg_op=’DELETE’ or tg_op=’UPDATE’ and new.nm=old.nm then
 return;
 end if;
 perform * from chart ca
 where ca.prefix=code.prefix for key share;
 if not found then
 raise sqlstate ‘23U02’
 using message=format(’Cannot find chart for %’, code.prefix);
 end if;
 return new;
end;
$code$
language plpgsql

16

Summary

● Nothing non-trivial

● The database should not allow obviously invalid
operations.

● The database must detect invalid states.

postgrespro.
ru

Postgres Professional
http://postgrespro.ru/

+7 495 150 06 91

info@postgrespro.ru

