
MobilityDB
A PostgreSQL-PostGIS Extension for Mobility Data

Management

What is Mobility Data ?

Mobility Data: Constructing Trajectories

But also Temporal Alphanumeric Types

tfloat: speed(Trip)

tbool: speed(Trip) > 90

Also Instantaneous Events

Instant: UK road accidents 2012-14

https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales

InstantSet: foursquare check-ins

https://support.foursquare.com/

https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales
https://support.foursquare.com/

MobilityDB

● A mainstream moving object database (MOD)

● Builds on PostgreSQL and PostGIS

● Developed by a team in Université Libre de Bruxelles

● Meant to be OPEN SOURCE

● Compliant with Open Geospatial Consortium (OGC) standards, in

particular the OGC Moving Features Access

Quick Example: Spatial Projection

TABLE Bus (LineNo integer, TripNo integer, Trip tgeompoint(Sequence, Point, 3812));

TABLE POI (POINo integer, Name text, Geo GEOMETRY(3812));

List the bus lines that traverse Place Louise

SELECT TripNo

FROM Bus B, (SELECT P.Geo FROM POI P WHERE P.Name = ‘Place Louise' LIMIT 1) T

WHERE intersects(B.Trip, T.Geo)

The intersects function is index supported, i.e., it is defined as follows

'SELECT $1 OPERATOR(@extschema@.&&) $2 AND @extschema@._intersects($1,$2)'

The && operator performs a bounding box overlaps index filtering

Quick Example: Spatial Filtering

TABLE Bus (LineNo integer, TripNo integer, Trip tgeompoint(Sequence, Point, 3812));

TABLE Network (LineNo integer, Route GEOMETRY(LINESTRING, 3812));

Find all the trips that deviated from their line routes

SELECT TripNo

FROM Bus B, Network N

WHERE B.LineNo = N.LineNo AND NOT contains(st_buffer(N.Route, 20), B.Trip)

Quick Example: Traditional Aggregation

TABLE Bus (LineNo integer, TripNo integer, Trip tgeompoint(Sequence, Point, 3812));

Total distance per week travelled by the buses

SELECT SUM(length(Trip)) travelled, date_part('week', startTimestamp(Trip)) AS week

FROM Bus

GROUP BY week;

Quick Example: Temporal Aggregation

TABLE Bus (LineNo integer, TripNo integer, Trip tgeompoint(Sequence, Point, 3812));

Cumulative distance travelled by the buses at each instant during one week

SELECT tsum(cumulativeLength(Trip)) travelled, date_part('week', startTimestamp(Trip))
AS week

FROM Bus

GROUP BY week;

Partial output for 3 days

Quick Example: Spatio-temporal Join

TABLE Bus (LineNo integer, TripNo integer, Trip tgeompoint(Sequence, Point, 3812));

TABLE Stops (StopNo integer, Geo GEOMETRY(POLYGON, 3812));

List all transit possibilities, i.e., when two buses from different lines meet at a

station, so the passenger have the opportunity to change the line

WITH AllStops AS (SELECT ST_Union(S.Geo) AS Geo FROM Stops S),

BusStops AS (SELECT TripNo, atGeometry(B.Trip, S.Geo) RestrictedRoute

FROM Bus B, AllStops S)

SELECT A.TripNo, B.TripNo FROM BusStops A, BusStops B

WHERE A.LineNo < B.LineNo AND A.TripNo < B.TripNo AND

toverlaps(A.RestrictedRoute, B.RestrictedRoute) &= TRUE

The &= (ever equals) operator tests whether a temporal type ever has a given

value and results in a Boolean value

MobilityDB Components

● Time types

● Temporal types

● Query functions

● GiST and SP-GiST indexes

● Aggregation functions

Time Types

● In addition to TimestampTz we needed 3 additional time types

● Period is a specialized version of tstzrange

SELECT period ’[2012-01-01 08:00:00, 2012-01-03 09:30:00)’;

● Similar functionality, more efficient implementation
○ fixed length while tstzrange is of variable length

○ empty periods and infinite bounds not allowed

● TimestampSet represents a set of distinct and ordered timestamptz values

SELECT timestampset ’{2012-01-01 08:00:00, 2012-01-03 09:30:00}’;

● PeriodSet represents a set of disjoint and ordered period values

SELECT periodset ’{[2012-01-01 08:00:00, 2012-01-01 08:10:00],

[2012-01-01 08:20:00, 2012-01-01 08:40:00]}’;

Time Types

● Accessor Functions: lower, upper, duration, startTimestamp, …

SELECT timestampN(periodset ’{[2012-01-01, 2012-01-03),

(2012-01-03, 2012-01-05)}’, 3);

-- "2012-01-04"

● Operators: =, <, …, @>, &&, …, <<#, &<#, …, -|-, +, -, *

SELECT period ’[2011-01-01, 2011-01-05]’ - period ’[2011-01-03, 2011-01-04]’

-- "{[2011-01-01,2011-01-03), (2011-01-04,2011-01-05]}"

● Indexing: GiST and SP-GiST indexes are supported

CREATE CREATE TABLE reservation (ResID integer, RoomID integer, During period);

CREATE INDEX reservation_during_idx ON reservation USING GIST (during);

Temporal Types

● Currently tint, tfloat, tbool, ttext, tgeompoint, tgeogpoint

● Come in four durations

X

Y

t

X

Y

t

X

Y

t

X

Y

t

Instant InstantSet Sequence SequenceSet

Temporal Types

CREATE TABLE Department (DeptNo integer, DeptName varchar(25), NoEmps tint(Sequence));

CREATE TABLE Flight (FlightNo integer, Route tgeogpoint(Sequence,PointZ,4326));

CREATE TABLE Trips (CarId integer, TripId integer, Trip tgeompoint);

INSERT INTO Trips VALUES

(10, 1, tgeompoint ’{[Point(0 0)@2012-01-01 08:00:00, Point(2 0)@2012-01-01 08:10:00,

Point(2 1)@2012-01-01 08:15:00)}’),

(20, 1, tgeompoint ’{[Point(0 0)@2012-01-01 08:05:00, Point(1 1)@2012-01-01 08:10:00,

Point(3 3)@2012-01-01 08:20:00)}’);

Why not PostGIS Trajectories

● Moving objects represented using LinestringM

● Measure M is not designed to specifically represent time, so total

ordering cannot be assumed

● This prevents efficient implementation
○ e.g., binary search cannot be used on general LinestringM values

● Besides temporal point, we also need temporal numbers, temporal

Booleans, temporal strings, etc.

From Static to Temporal Types: Lifting

● Lifted functions: functions that have static counterparts, but because some of

the arguments are temporal, the return is also temporal
○ Static: st_intersects: geometry geometry → bool

○ Lifted: tintersects: tgeompoint geometry → tbool

tintersects: tgeompoint tgeompoint→ tbool

● Semantics: result of a lifted function obtained by applying static function to

each instant of a temporal value

● Spatial support delegated to PostGIS

● We developed a novel generic method for lifting static functions

time

Temporal Types: Functions

Constructor Functions: easier than input literals

SELECT tgeompointinst(’Point(0 0)’, ’2001-01-01 08:00:00’);
SELECT tintseq(ARRAY[tintinst(2,’2001-01-01 08:00:00’),

tintinst(2,’2001-01-01 08:10:00’)], true, false);

Accessor Functions: startValue, startTimestamp, Instants, …

SELECT instantN(tfloat ’{[1@2012-01-01, 2@2012-01-02),

[3@2012-01-03, 3@2012-01-04 , 5@2012-01-05)}’, 3);
-- "3@2012-01-03"

Temporal Types: Functions

Spatiotemporal functions: twCentroid, nearestApproachInstant, …

SELECT nearestApproachDistance(tgeompoint ’[Point(0 0)@2012-01-
02, Point(1 1)@2012-01-04, Point(0 0)@2012-01-06)’,

geometry ’Linestring(2 2,2 1,3 1)’);
-- "1"

Projection functions: atValue, atRange, atMax, atTimestamp, …

SELECT astext(atGeometry(

tgeompoint ’[Point(0 0)@2012-01-01, Point(3 3)@2012-01-04)’,

geometry ’Polygon((1 1,1 2,2 2,2 1,1 1))’));
-- "{"[POINT(1 1)@2012-01-02, POINT(2 2)@2012-01-03]"}"

Temporal Types: Functions

● Difference Functions: minusValue, minusMax, minusPeriod, …

● Comparison Operators: =, <, …, (B-Tree), #=, #<, … (temporal comparison),

&=, @= (temporal type to Boolean)

● Temporal Operators: +, -, *, / for temporal integers and floats

● Bounding Box Operators
○ <<, >>, &<, &>: value dimension for tint and tfloat, x-dimension for temporal points

○ <<|, |>>, &<|, and |&>, y-dimension

○ <</, />>, &</, and /&> z-dimension

○ <<#, #>>, #&<, and #&> time dimension

● Distance Operators: |=|, <->

● Casting: tfloat::tint, tgeogpoint::tgeompoint

● Spatial Relationships: intersects, relate, …, tintersects, trelate, …

GiST and SP-GiST Indexes

Temporal types support both GiST and SP-GiST indexes

CREATE CREATE INDEX Department_NoEmps_Gist_Idx ON Department USING Gist(NoEmps);

CREATE INDEX Trips_Trip_SPGist_Idx ON Trips USING SPGist(Trip);

Indexes store the bounding box for the temporal types

● period for tbool and ttext (1D)

● box for tint and tfloat (2D)

● gbox for tgeompoint and tgeogpoint (4D)

Indexes can accelerate queries involving the following operators

● <<, &<, …, <<|, &<|, …, &</, <</, …, for the value/spatial dimension

● &<#, <<#, .., for the time dimension

● &&, @>, <@, ~=, consider as many shared dimensions

SP-GiST Indexes

● To implement SP-GiST, the bounding box is transformed into a higher

dimensional point

○ 2D point to represent a period

○ 4D point to represent a box

○ 8D point to represent a gbox

● We reused approach from SP-GiST indexes for BOX type in PostgreSQL

● After that we proposed patches for SP-GiST indexes for 2D/3D Geometry

(PostGIS V2.5) and ND Geometry (PostGIS V3.0)

Aggregation Functions

Three types of aggregations

● Regular aggregation functions

SELECT COUNT(Trip) FROM Bus;

● Temporal aggregation functions: result in a temporal type

SELECT TCOUNT(Trip) FROM Bus;

● Sliding window aggregation functions : interval parameter, result in a temporal

type

SELECT WMAX(speed(Trip), interval ’10 minutes’) FROM Bus;

Temporal Aggregation: Parallel Execution

Compute how many cars were active at each period in table Periods

Temporal Aggregation: Partitioning

CREATE TABLE Trips
(

CarId integer NOT NULL,
TripId integer NOT NULL,
TripDate date,
Trip tgeompoint,
Traj geometry,
PRIMARY KEY (CarId, TripId, TripDate),
FOREIGN KEY (CarId) REFERENCES Cars (CarId)

) PARTITION BY LIST(TripDate);

CREATE TABLE Trips_2007_05_27 PARTITION OF Trips FOR VALUES IN ('2007-05-27');
CREATE TABLE Trips_2007_05_28 PARTITION OF Trips FOR VALUES IN ('2007-05-28');
CREATE TABLE Trips_2007_05_29 PARTITION OF Trips FOR VALUES IN ('2007-05-29');
CREATE TABLE Trips_2007_05_30 PARTITION OF Trips FOR VALUES IN ('2007-05-30');
...

Temporal Aggregation: Partitioning

3D Temporal Points

● Builds upon PostGIS 3D Geometry and Geography

● Many functions: length, cumulativeLength, speed, expandSpatial,

expandTemporal, twCentroid, azimuth, tintersects, …

● gbox is used for representing the bounding box

● Supported in both GiST and SP-GiST

MobilityDB Roadmap

● Development started locally at ULB
○ 2,374 functions, 62,825 lines of C, 19,070 lines of SQL, 19,939 lines of regression tests

● Promising results from robustness tests, performance tests, benchmarking

wrt PostGIS trajectories and Secondo

● Currently finalizing planner statistics and selectivity functions

● Development planned to move to github soon

● Stable release delivered open source as soon as it is ready

● Several extensions are being explored
○ Network-constrained trajectories with pgRouting

○ Visualization with QGIS

○ Big mobility data with Postgres-XL

○ Split lists for optimized temporal aggregation

MobilityDB Roadmap

- Demo at http://demo.mobilitydb.com/ using BerlinMOD benchmark data

http://demo.mobilitydb.com/

Thanks for listening !

Questions ?

