
Возможности ускорения GiST:
патчи, хаки, твики

GiST speedup: patches, hacks and tweaks

Andrey Borodin

Software engineer at Octonica

PhD, Associate Professor at URFU

Multidimensional access methods

Windows search

select *
from table
where table.point
is inside some region

Aggregation
select aggregate(column)
from table
where table.point
is inside some region

kNN (k Nearest Newburgh)

select *

from table

order by distance from some point

limit N

Windows search

kNN search

Aggregate Query (OLAP)

R-tree

R-tree

R-tree

R-tree

R-tree

R-tree: split

R-tree: split

R-tree: choose subtree

Generalization of R-Tree
M-tree

History of multidimensional access methods

Based on work of O. Gunther and V. Gaede

Generalized index search trees

SPECIAL

Intra-page indexing: skiptuple approach

HEAP

Theoretically optimal fan-out

In a tree with fan-out f query returning exactly 1 row has to touch every
tuple in a node, but in optimal tree path from root to leaf will take exactly 1
page on each level, so key-compares count K is equal to tree height h
multiplied by f.

K = f ∙ h = [f ∙ logfN],

which is optimal with f e ≈ 3.

Without loss of generality this holds for cache lines count instead of key compares.

As we saw above this does not work for f = 2. Probably, due to differences of
constraints (experiment involved more than one row returned by aggregate
query)

Performance improvement estimation
(rough upper bound)

• On a page with n ≈ 243 entries optimal regrouping for f = 3 will
construct intra-page tree with 4 levels.

• One-row-query traversal will take 15 key compares instead of 243

• Overall tree height will be 57% higher due to reduced 1.5 times page
capacity

• One-row-query performance will be better 243/15/1.57 = 10 times

• But in practice I only could gain 10%, as for now.

Tuples were reordered with updates

• Before update

• After update of T3

IndexTupleOverwrite patch

• https://commitfest.postgresql.org/10/661/

• Test:

• Results: up to 2 times faster, 3 times smaller index

Only on ordered data!

Randomized data insertions speed improvement is around 10%-15%

Randomized data insertions already was on this speeds, it is ordered data that was
slow

https://commitfest.postgresql.org/10/661/

Fractal tree for GiST

All this space is a buffer!

Fractal tree for GiST

On 1 million of insertions classic GiST is 8% faster

On 3M performance is equal

On 30M lazy GiST if 12% faster

On my machine with SSD disks,

With HDDs IO is more important and number may change in favor of fractal
tree

More details and patch:

https://www.postgresql.org/message-
id/CAJEAwVE_8VDTV1Utfe1CmbVRCvVPtvHZnSKFdMf0rB5mELSLeA%40mail.
gmail.com

R-tree: choose subtree

Current penalty function from cube extension

Realms

2 flag bits inside IEEE 754 float

M

M

Packing float: code

typedef union { float fp; int i; } U;

float pack_float(const float v, const int r) {

const U a = { .fp = v };

const U b = { .i = (a.i >> 2) + r * (INT32_MAX / 4) };

return b.fp;

}

Benchmarking

Cube extension GiST penalty function
improvement

• https://commitfest.postgresql.org/10/782/

“Returned with feedback”

https://commitfest.postgresql.org/10/782/

Revised R*-tree

• Split algorithm (with small deviations):

https://github.com/x4m/pggistopt/blob/rrsplit_pack/contrib/cube/cub
e.c#L539

Up to 50% faster small SELECTs for cube extension

• Choose subtree algorithm:

Currently impossible in GiST API

As Norbert Beckman, author of RR*-tree, put it in the discussion:
“Overlap optimization is one of the main elements, if not the main
query performance tuning element of the RR*-tree. You would fall back
to old R-Tree times if that would be left off.”

https://github.com/x4m/pggistopt/blob/rrsplit_pack/contrib/cube/cube.c#L539

GiST API: collision check function

• Collision check currently returns a binary result:

1. Query may be collides with subtree MBR

2. Query do not collides with subtree

• This result may be augmented with a third state: subtree is totally
within the query. In this case, GiST scan can scan down subtree
without key checks.

GiST API: collision check function

GiST API advancement

1. Allow choose subtree not via penalty calculation

2. Extend consistency API

GiST API advancement

1. Allow choose subtree not via penalty calculation

2. Extend consistency API

Any students here?

GiST API advancement

1. Allow choose subtree not via penalty calculation

2. Extend consistency API

GSoC 2017 applications are open!

Read more on
https://wiki.postgresql.org/wiki/GSoC_2017#GiST_API_advancement

Questions?

Contacts

amborodin@acm.org

vk.com/amborodin

github.com/x4m

Andrey Borodin
Software engineer at Octonica

PhD, Associate Professor at Ural Federal University

mailto:amborodin@acm.org

