

Linux VMM
for Database Developers

Alexander Krizhanovsky
Tempesta Technologies, NatSys Lab.

ak@natsys-lab.com

Who am I?

CEO & CTO at NatSys Lab & Tempesta Technologies

Tempesta Technologies (Seattle, WA)
● Subsidiary of NatSys Lab. developing Tempesta FW – a first and

only hybrid of HTTP accelerator and firewall for DDoS mitigation &
WAF

NatSys Lab (Moscow, Russia)
● Custom software development in:

• high performance network traffic processing
• databases

The begin
(many years ago)

Database to store Instant messenger's history

The begin
(many years ago)

Database to store Instant messenger's history

Plenty of data (NoSQL, 3-touple key)

High performance

Weak consistency (no transactions)

The begin
(many years ago)

Database to store Instant messenger's history

Plenty of data (NoSQL, 3-touple key)

High performance

Weak consistency (no transactions)

2-3 months (quick prototype)

Simple DBMS

Disclamer:
memory & I/O only,
no index,
no locking,
no queries

“DBMS” means
InnoDB

Linux VMM?

open(O_DIRECT): OS kernel bypass

 «In short, the whole "let's bypass the OS" notion is just fundamentally
broken. It sounds simple, but it sounds simple only to an idiot who writes
databases and doesn't even UNDERSTAND what an OS is meant to
do.»

Linus Torvalds
«Re: O_DIRECT question»

https://lkml.org/lkml/2007/1/11/129

mmap(2)!

Automatic page eviction

mmap(2)!

Automatic page eviction

Transparrent persistency

mmap(2)!

Automatic page eviction

Transparrent persistency

I/O is managed by OS

mmap(2)!

Automatic page eviction

Transparrent persistency

I/O is managed by OS

...and ever radix tree index for free!

x86-64 page table
(radix tree)

A tree in the tree

a.0

c.0

a.1

c.1

Page table
a b

c

Application Tree

mmap(2): index for free

 $ grep 6f0000000000 /proc/[0-9]*/maps
 $

 DbItem *db = mmap(0x6f0000000000, 0x40000000 /* 1GB */, ...);

 DbItem *x = (DbItem *)(0x6f0000000000 + key);

mmap(2): index for free

 $ grep 6f0000000000 /proc/[0-9]*/maps
 $

 DbItem *db = mmap(0x6f0000000000, 0x40000000 /* 1GB */, ...);

 DbItem *x = (DbItem *)(0x6f0000000000 + key);

0x6f0000000000 + key – virtual address

Data is stored in physical page

Keys density is crucial

...or just an array

 DbItem *db = mmap(0, 0x40000000 /* 1GB */, ...);

 DbItem *x = &db[key];

Virtual Memory Area (VMA)

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Spacial locality is crucial: 1 address outlier is up to 12KB

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Spacial locality is crucial: 1 address outlier is up to 12KB
…but Linux VMM coalesces
memory areas

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Spacial locality is crucial: 1 address outlier is up to 12KB
…but Linux VMM coalesces
memory areas

Context switch of user-space
processes invalidates TLB

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Spacial locality is crucial: 1 address outlier is up to 12KB
…but Linux VMM coalesces
memory areas

Context switch of user-space
processes invalidates TLB
...but threads and user/kernel
context switches are cheap

Cache Lookup (x86-64)

● L1: VIPT (Virtually Indexed
Physically Tagged)

● L2, L3: PIPT (Physically Indexed
Physically Tagged)

VIPT: L1 cache invalidation on
context switch

Page fault

Hello world page fault

 int main(int argc, char *argv[])
 {

 printf(“Hello world!\n”);

 return 0;

 }

Linux paging

Page eviction

Typically current process reclaims memory

kswapd – alloc_pages() slow path

OOM: usually shrinking active list

active list

inactive list

add

freeP

P

P

P

P P

P

P

referenced

VMM lists state

 $ grep -i active /proc/meminfo
 Active: 5447208 kB
 Inactive: 2030052 kB
 Active(anon): 4465572 kB
 Inactive(anon): 1388500 kB
 Active(file): 981636 kB
 Inactive(file): 641552 kB

Managing VMM lists

Sysctls:
● vm.dirty_background_{ratio,bytes} – dirty page makers are

throttled and writeback workers are started
● vm.dirty_ratio – dirty page maker starts writing itself
● vm.dirty_expire_centisecs – when a page becomes inactive
● vm.dirty_writeback_centisecs – interval between writebacks by

flushers
● vm.vfs_cache_pressure – seems unused now…
● ...and more in linux/Documentation/sysctl/vm.txt

msync(2)

man msync: “msync - synchronize a file with a memory map”

msync(2)

man msync: “msync - synchronize a file with a memory map”

linux/mm/msync.c:

/*
 * MS_SYNC syncs the entire file - including mappings.
 *
 * MS_ASYNC does not start I/O (it used to, up to 2.5.67).
 * Nor does it marks the relevant pages dirty (it used to up to
2.6.17).
 * Now it doesn't do anything, since dirty pages are properly tracked.
 */

fsync(2), posix_fadvise(2), madvise(2)

fsync(int fd) - synchronizes the whole file

fsync(2), posix_fadvise(2), madvise(2)

fsync(int fd) - synchronizes the whole file

posix_fadvise(int fd, off_t offset, off_t len, int advice)

● POSIX_FADV_DONTNEED – invalidate specified pages

fsync(2), posix_fadvise(2), madvise(2)

fsync(int fd) - synchronizes the whole file

posix_fadvise(int fd, off_t offset, off_t len, int advice)

● POSIX_FADV_DONTNEED – invalidate specified pages
 int invalidate_inode_page(struct page *page) {
 if (PageDirty(page) || PageWriteback(page))
 return 0;

fsync(2), posix_fadvise(2), madvise(2)

fsync(int fd) - synchronizes the whole file

posix_fadvise(int fd, off_t offset, off_t len, int advice)

● POSIX_FADV_DONTNEED – invalidate specified pages
 int invalidate_inode_page(struct page *page) {
 if (PageDirty(page) || PageWriteback(page))
 return 0;

madvise(void *addr, size_t length, int advice)

MADV_DONTNEED – unmap page table entries, initializes dirty
pages flushing

Buddy allocator

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Smaller TLB (~1024 for 4KB, ~32 for 2MB, ~4 for 1GB)

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Smaller TLB (~1024 for 4KB, ~32 for 2MB, ~4 for 1GB)

Cheaper TLB cache miss (3-level or 2-level)

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Smaller TLB (~1024 for 4KB, ~32 for 2MB, ~4 for 1GB)

Cheaper TLB cache miss (3-level or 2-level)

Smaller page table

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Smaller TLB (~1024 for 4KB, ~32 for 2MB, ~4 for 1GB)

Cheaper TLB cache miss (3-level or 2-level)

Smaller page table

Less number of page faults

Huge pages

Huge pages – 2MB (4KB * 512), gigantic pages – 1GB (4KB * 512 ^2)

Smaller TLB (~1024 for 4KB, ~32 for 2MB, ~4 for 1GB)

Cheaper TLB cache miss (3-level or 2-level)

Smaller page table

Less number of page faults

Poorly supported in VMs (especially 1GB)

 $ grep 'pse\|pdpe1g' /proc/cpuinfo

Compound pages

Huge pages aren't real pages (compound pages):

 struct page *p, *page = alloc_pages(HUGETLB_PAGE_ORDER);

 __SetPageHead(page);

 for (p = page + 1; p < page + (1 << HUGETLB_PAGE_ORDER); ++p) {

 p->first_page = page;

 __SetPageTail(p);

 }

Transparrent huge pages vs hugetlbfs

Hugetlbfs reserves huge pages at system startup
● need page – get page

Transparrent huge pages vs hugetlbfs

Hugetlbfs reserves huge pages at system startup
● need page – get page

THS allocates huge pages in runtime
● VMM does more work on defragmentation
● Page fault can do more work on trying to allocate huge page

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)
● nobody knows when the pages are synced

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)
● nobody knows when the pages are synced

...but it will be somewhen soon

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)
● nobody knows when the pages are synced

...but it will be somewhen soon
● checkpoint is full database file sync

Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)
● nobody knows when the pages are synced

...but it will be somewhen soon
● checkpoint is full database file sync

...typically DONTNEED'ed pages are already synced

Thanks!

E-mail: ak@natsys-lab.com

Blog: http://natsys-lab.blogspot.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

